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Abstract

Motivated by the Laser-Induced Incandescence (LII) technique for in situ sizing of submicron aerosols, non-
continuum heat transfer between an isolated, motionless, highly overheated spherical particle and its cooler

surrounding gas is studied using the Direct Monte Carlo Simulation (DSMC) technique for the `calibration' case of
a monatomic, hard-sphere gas. We ®nd that our numerical DSMC results are adequately described by a variable
property extension of Fuchs' two-layer theory, whereas other interpolation formulae fail in the Knudsen transition
regime when the particle/gas temperature ratio is large. On this basis, tractable equations are provided which will

permit accurate estimates of the transition regime heat transfer coe�cient for a polyatomic ideal gas with arbitrary
temperature-dependent heat capacity and Fourier conductivity. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Energy exchange between a spherical body and a

quiescent gas in the Knudsen transition regime is a

classical problem in kinetic theory of gases [1]. In both

the free-molecular and continuum limiting cases, this

problem admits quasi-steady analytical solutions.

There are also simple interpolation formulae, which

cover the intermediate regime [2] and agree well with

available experimental data in the near-isothermal

limit.

Usually, it is assumed that the particle±gas tempera-

ture di�erence DT is small compared to the gas tem-

perature Tg, which allows linearization with respect to

the small parameter DT/Tg, simplifying such problems

considerably. However, this assumption cannot be

made in many important cases, e.g., when aerosol par-

ticles are suddenly heated by a powerful laser pulse.

For example, in probing aerosols by the laser-induced

incandescence method (LII) (see, e.g., [3]), the particle±

carrier gas temperature di�erence may exceed the gas

temperature by even more than one decade for aero-

sols originally at room temperature. In applications of

LII analysis to aerosol characterization in ¯ames [4],

typical values of DT/Tg are between 1 and 3. Large

di�erences between particle and gas temperatures are

also encountered in thermal plasma processing, when

relatively cool particles are injected into plasmas

having temperature of several thousand Kelvins. Xi

and Ping [5] have found an analytical solution for the

heat transfer between a moving particle and thermal

plasma in free-molecular regime, while Lee et al. [6]

used the Fuchs theory to calculate the particle±plasma

heat ¯ux in the transition regime of intermediate

Knudsen numbers.

For moderate and large ratios DT/Tg, linearization

cannot be justi®ed and available interpolation for-
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mulae must be corrected to account for appreciable

temperature di�erences. To analyze the altered par-

ticle±gas heat transfer laws under such highly non-

equilibrium conditions, at least in the absence of subli-

mation or chemical reaction, we have applied a direct

Monte Carlo simulation method (DSMC of Bird, [7]),

already successfully tested on a class of transition

regime gas±solid enclosure heat transfer problems by

Papadopoulos and Rosner [8]. The background gas

molecules are modeled as hard spheres in the region

adjacent to the motionless spherical particle, while, at

several mean free paths from the surface, the DSMC

solution is matched to the analytical, variable-property

continuum solution in the in®nite `outer' region.

Matching of the two solutions is carried out iteratively,

with good convergence. Our strategy is to calculate the

heat transfer rates using the DSMC method over a

wide range of Knudsen numbers and accommodation

coe�cients and compare the results with predictions of

known interpolation formulae. Only the formulae

passing such a test are likely to be adequate in calcu-

lating the heat transfer rates under real non-equili-

brium conditions.

The numerical calculations have shown that only a

generalized Fuchs' two-layer model of the variable

property thermal boundary layer adequately predicts

the heat transfer rates at high particle/gas temperature

ratios. We conclude with a discussion of extensions in

progress, gas/surface energy accommodation under

such conditions [9], and the implications of these new

Nomenclature

a particle radius
c mean thermal speed of the gas molecules
cp speci®c heat capacity of the particle

cv speci®c heat capacity of the gas at constant
volume

f velocity distribution function of molecules

f0 Maxwellian equilibrium velocity distri-
bution

F function describing variable property

e�ects
l mean free path of the gas molecules
L geometric diameter of the aggregate
k heat conductivity coe�cient

kB Boltzmann constant
Kn Knudsen number
mg mass of a gas molecule

n external normal vector
nm number density of molecules
N number of spherules in an agglomerate

Nuh Nusselt number
p gas pressure
qÇ heat transfer rate

r distance from the particle center
R gas/solid scattering kernel function
Req equivalent radius of the aggregate (for heat

transfer)

T temperature
UI internal energy per gas molecule
v velocity vector of the gas molecule

v ' velocity vector of the incident molecules
v� dimensionless velocity of the gas molecule.

Greek symbols
a energy accommodation coe�cient (gas/

solid interface)

g adiabatic constant of the ideal gas, [(kB/
mg)+cv]/cv

g � average value of adiabatic constant [Eq.

(6)]
d thickness of the boundary layer in Fuchs

and DSMC models

dD Dirac's delta function
DT particle±gas temperature di�erence, TpÿTg

z constant parameter in formula (21)

Y temperature ratio, Tp/Tg

Li auxiliary dimensionless parameters in Eq.
(16), i= 1, 2

x auxiliary factor in the interpolation for-

mula (21)
r mass density
teq gas equilibration time

tp,h characteristic particle cooling time
F heat ¯ux potential
o exponent in the power law for heat con-

ductivity coe�cient.

Subscripts
c continuum limit
c,l linearized in the continuum limit

f free-molecular limit
g background gas in unperturbed state
h heat transfer

i incident gas molecules
ncp non-constant (variable) property
p particle

r radial component of a vector
ref reference value
d corresponding to the limiting sphere at

r=d.
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results for accurate inferences of particle size using the
LII method.

2. Heat transfer in limiting cases

2.1. Free-molecular regime

Consider a spherical particle having a temperature
Tp in a gas which has a temperature Tg far from the

particle. Suppose that the particle radius a is much
smaller than the mean free path of gas molecules lg, so
that the Knudsen number Kn=lg/a is large. Then the

energy ¯ow rate qÇ i to

_q i � pa2ng �c �2kBTg �UI�Tg�� �1�

the particle brought by the incident molecules, is given

by the formula (see, e.g., Refs. [10,11])

�c �
��������������
8kBTg

pmg

s
�2�

where, for any reference temperature Tref (including
298.16 K),

UI�T � �
�T
Tref

mgcv�T � dTÿ 3

2
kB�Tÿ Tref � �3�

and cv is the speci®c heat capacity of the gas, ng, c and
mg are the concentration, the mean speed and the mass

of the gas molecules, kB is the Boltzmann constant and
UI is the internal (other than translational) energy per
gas molecule. Usually, the energy ¯ux from the particle

is calculated assuming partial accommodation of
energy on the particle surface. Under such an assump-
tion, Eqs. (1) and (3) yield the following formula for

the net energy transfer rate between the particle and
the gas qf :

_q f � apa2ng �ckB

 
1

2
�Tp ÿ Tg� �

�Tp

Tg

dT

gÿ 1

!
�4�

where a is the energy accommodation coe�cient and g
is the adiabatic exponent (ratio of the gas speci®c
heats at constant pressure and volume, respectively). It

is assumed that in the case of complete accommo-
dation (a=1), re¯ection of molecules at the particle
surface is di�use. Generally, the accommodation coef-

®cient depends on the nature of gas and particle sur-
face, as well as their temperatures, as discussed by
Burke and Hollenbach [12].

Eq. (4) can be formally simpli®ed by introducing an
appropriate average value g � of the adiabatic constant
on the interval [Tg, Tp]:

_q f � apa2
pg �c

2

�
g� � 1

g� ÿ 1

�
�Yÿ 1� �5�

where

1

g� ÿ 1
� 1

Tp ÿ Tg

�Tp

Tg

dT

gÿ 1
�6�

and Y is the temperature ratio Tp/Tg. For polyatomic
gases and for monatomic gases with electronic exci-

tation, the temperature variation of g may be especially
important and can lead to signi®cant variation of the
heat transfer rates. Consider, for example, the particle

heated up to the temperature Tp=3500 K in nitrogen
with temperature Tg=1500 K. Then, the calculation
based on Eq. (6) and heat capacity values of JANAF

Tables [13] yields g �=1.3 and the factor (g �+1)/
(g �ÿ1)=7.8 in Eq. (5). At room temperature, g=1.4,
and this ratio is equal to 6.

The last (diatomic) example shows the importance
of accounting for internal degrees-of-freedom in energy
transfer calculations. If we had neglected the internal
rotational and vibrational energy of the gas and

assume g=5/3, (g �+1)/(g �ÿ1)=4, this would result in
almost 50% underestimate in the heat ¯ux from the
particle. The corresponding error for a polyatomic gas

would be even larger.

2.2. Continuum regime

In the continuum regime the heat transfer between
the particle and the gas is di�usion-controlled and

depends on the gas temperature distribution near the
particle. Solution of the stationary continuum heat
transfer equations in the in®nite quiescent region out-
side a spherical particle yields

_q c � 4pa�F�Tp� ÿ F�Tg�� �7�

where

F�T � �
�T
Tref

k�T � dT �8�

Here k(T ) is the Fourier heat conductivity coe�cient
of the gas and F is called the heat ¯ux `potential' (see,

e.g., Rosner [14]). If the ratio DT/Tg is small, Eq. (7)
can be linearized to yield a commonly used equation:

_q c, l � 4pak�Tg��Tp ÿ Tg� �9�

In many cases the dependence of the gas heat conduc-
tivity on the gas temperature may be approximated by

a power law:

k�T � � k�Tg�
�
T

Tg

�o

�10�
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which leads to the following equation:

_q c �
4pak�Tg�Tg

o � 1
�Yo�1 ÿ 1� �11�

where o is a constant parameter. Typical values of the
exponent o for real gases lie between 0.6 and 0.9,

while for the hard sphere intermolecular potential
o=1/2. For moderate ratios DT/Tg Eq. (11) for heat
transfer rate can exceed the values predicted by its lin-

earized version (9) considerably, according to the
equation

_q c

_q c, l

� 1

�o � 1�
�Yo�1 ÿ 1�
�Yÿ 1� � Fncp, h �12�

The mean free path of gas molecules is connected with
thermal conductivity coe�cient k and other gas par-
ameters by the monatomic gas equation

lg � 4

5

k�Tg�Tg

pg

��������������
mg

2kBTg

r
�13�

where pg is the equilibrium gas pressure. With account

for this de®nition in the case of power law dependence
(10), the ratio of the heat transfer rates calculated for
continuum (7) and free-molecular regime (5) can be

expressed:

_q c

_q f

� 5
���
p
p

Kn

a
�g� ÿ 1�
�g� � 1�

_q c

_q c, l

�14�

Both the Knudsen number Kn=lg/a and the mean free
path lg are de®ned based on the unperturbed par-
ameters of the background gas.

3. Interpolation formulae

There is no general analytical solution of the

Boltzmann equation describing gas behavior in the in-
termediate regime of moderate Knudsen numbers, even
in the case of small temperature di�erences. The use of
interpolation formulae, veri®ed by comparison with

available numerical solutions or experimental data,
appears to be the only feasible opportunity to predict
particle±gas energy exchange in such a case.

3.1. Fuchs' approach

Fuchs [15,16] proposed a general method to estimate
the mass/energy transfer between the gas phase and
isolated particle in cases when the particle size is com-

parable to the mean free path of the molecules under
consideration in the gas. The method is based on the
separation of the whole space outside the particle into

two parts: the region outside the limiting sphere with
radius d+a, concentric to the particle, and the bound-
ary layer with thickness d adjacent to the particle sur-

face. The thickness of the boundary layer is chosen to
be about the gas mean free path, and the molecular
motion inside that layer considered as collisionless,
while in the outer region the temperature distribution

is described by means of continuum theory.1

Following Fuchs [15], we assume the de®nition of
Wright [20] for the limiting sphere radius:

d� a

a
� a2

l2d

�
1

5
L5

1 ÿ
1

3
L2L3

1 �
2

15
L5=2

2

�
�15�

The radius d+a has a geometrical meaning of the
average distance between the particle center and the
points, lying in the gas one molecular mean free path

ld away from some point on the particle surface:

L1 � 1� ld
a
; L2 � 1�

�
ld
a

�2

�16�

In the case of large temperature ratios, the mean free

path of molecules near the limiting sphere ld di�ers
from the mean free path lg far from the particle. The
de®nition (13) of the mean free path yields

ld � k�Td�
k�Tg�

�
Tg

Td

�1=2

� pg

pd
lg �17�

Neglecting the e�ect of thermal stresses [21] in this ap-
proximate calculation, the pressures pd and pg may be
assumed equal. Then, in the case of power law (10),

Eq. (17) yields

ld
a
� Kn

�
Td

Tg

�o�1=2
�18�

If the molecular velocity distribution at the limiting

sphere can be approximated as Maxwellian, the heat
transfer rate from the particle can be calculated simi-
larly to Eqs. (4) and (5):

_q � apa2
pg

2

��������������
8kBTd

pmg

s
g� � 1

g� ÿ 1

�
Tp

Td
ÿ 1

�
�19�

where Td is the gas temperature at the limiting sphere
and g � is the mean value of the adiabatic constant

1 Lee [17], Lee et al. [6] and Chyou [18] have applied a simi-

lar model to calculate ion di�usion and heat ¯uxes to particles

carried by plasma. However, they placed the limiting sphere

about a few Debye lengths from the sphere, which is substan-

tially shorter than the ion-neutral mean free path. This led to

systematic errors in the range of large Knudsen numbers, as

discussed by Leveroni and Pfender [19].
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obtained by averaging (6) with substitution Tg 4 Td

for the lower integration limit.

In the region outside the limiting sphere the conti-
nuum theory equations are assumed. Then, in the case
of the power law dependence (10) for the heat conduc-

tivity the total heat ¯ux is

_q � 4p�d� a�k�Tg�Tg

o � 1

"�
Td

Tg

�o�1
ÿ1
#

�20�

Since there are no sinks or sources of heat inside the
d-layer adjacent to the particle, Eqs. (19) and (20) in a

quasi-stationary case describe the same physical quan-
tity _q . Equating these formulae results in the following
algebraic equation for Td:

5
���
p
p

Kn

a�o � 1�

�
1� d

a

� �g� ÿ 1�
�g� � 1�

"�
Td

Tg

�o�1
ÿ1
#

�
�
Tp

Td
ÿ 1

�
�
�������
Td

Tg

s
�21�

where the ratio d/a is a function of the temperature

ratio Td/Tg, given by Eqs. (15), (16) and (18). This
equation can be solved numerically to ®nd the tem-
perature Td. Then the heat transfer rate _q can be cal-

culated from Eq. (19).

3.2. Sherman and Fuchs±Loyalka interpolation formulae

Sherman [22] has found that in many experiments in
the intermediate Knudsen regime, the rates of heat (or
mass) transfer between a particle and a gas can be

described by a simple algebraic formula of the har-
monic mean form:

_q

_q c

�
�
1� _q c

_q f

�ÿ1
�22�

where the indices `f' and `c' denote the heat transfer
rates in free-molecular and continuum regimes. Since

the ratio qc/qf is proportional to the Knudsen number
[see Eq. (14)], the structure of this formula guarantees
correct limiting values qc and qf for the heat transfer

rate in the continuum and free-molecular regimes, re-
spectively.
Fuchs and Sutugin [23] and later Loyalka [24,25]

have generalized the Sherman equation to the form:

_q

_q c

�
�
1� Kn

x _q c= _q f � z
x Kn� 1

�ÿ1
�23�

where x and z are dimensionless coe�cients of order

unity. Eq. (23) is written for the case of complete ther-
mal accommodation (a=1).
For the cases when the energy accommodation coef-

®cient a di�ers from unity, Cercignani and Pagani [26]
introduced the following interpolation formula:

_q �a�
_q c

� _q �1�
_q c

�
1� �1ÿ a�

a
_q �1�
_q f �1�

�ÿ1
�24�

where the heat transfer rates qÇ f (1) and qÇ (1) are given
by Eq. (4) with a=1 and by Eq. (23), respectively.
Despite the fact that the detailed asymptotics of Eq.

(23) in the free-molecular limit does not agree with
more accurate results based on linearization of the
BGK model equation (as shown by Tompson and
Loyalka [27]), this interpolation formula describes

known experimental results on heat transfer with excel-
lent accuracy, provided the particle/gas temperature
di�erence is small.

4. Direct Monte Carlo simulation

The discussed interpolation formulae are unlikely to
be equally successful when DT/Tg is not small. In view
of lack of experimental data on heat transfer under the
considered highly non-equilibrium conditions, the nu-

merical simulation appears to be the only possible tool
for their veri®cation.
Bird [7] has developed an e�ective technique called

Direct Monte Carlo Simulation (DSMC), which has
already been employed in a variety of highly non-equi-
librium situations ranging from calculation of hyper-

sonic rare®ed ¯ows [28] to creeping ¯ows with very
low Mach and Reynolds numbers caused by high tem-
perature gradients at the channel walls [8]. We have

invoked the Direct Monte Carlo Simulation (DSMC)
technique to provide `exact' solutions (of the
Boltzmann equation) against which the performance of
suitably generalized interpolation methods can be

checked. For numerical tests, we have chosen a well-
de®ned and simple hard sphere model, for which the
heat conductivity coe�cient is a function of tempera-

ture, described by the power law (10) with o=1/2. The
energy of the hard sphere molecules is connected only
with their translation motion, so that value of the gas

constant g is 5/3 [10]. The hard sphere gas is a classical
model for a DSMC simulation.
The space outside the spherical particle was divided

into two parts, analogously to Fuchs' approach: in the

outer region outside the limiting sphere with radius
d+a, where the continuum theory equations are valid,
and the layer adjacent to the particle with thickness d,
where the DSMC method is applied. However, in con-
trast to the Fuchs calculation, the width d is chosen
here to be large compared to the mean free path.

A general description of the DSMC method, includ-
ing a considered case of spherical symmetry, is given in
a book of Bird [7]. In our calculations, billions of gas
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molecules were represented computationally by 4 � 105

simulated molecules. The d-layer was divided into 200

concentric shells of equal thickness. All calculations
started from an initial state of isothermal gas. Velocity
components and position coordinates of the molecules

were stored and modi®ed with the time as the mol-
ecules undergo collisions and boundary interactions in
simulated physical space. Inter-molecular collisions

were simulated using the classical model for hard
spheres. The collisions between the molecules and the
particle surface are, in the general case, described by

the following equation for the velocity distribution
function of molecules f:

f �v� �
�

v 0n<0

R�v 0, v� f�v 0�dv 0; vn > 0 �25�

where v ' and v are the velocities of the incident and
re¯ected molecules and n is the external normal to the
particle surface and R is the scattering kernel function.
To account for momentum and energy accommo-

dation of molecules on the particle surface, the scatter-
ing process was simulated as a simple combination of
specular re¯ection and completely di�use re¯ection

(Maxwell model) with the following scattering kernel:

R�v 0, v� � �1ÿ a�dD�v 0 ÿ v� 2n�nv��

� af0�v, Tp� j vn j
�26�

f0�v, Tp� �
�

m

2pkTp

�3=2

� exp

 
ÿ mv2

2kTp

!
�27�

where dD is the Dirac delta function and f0 is the
Maxwellian equilibrium velocity distribution.
On the opposite boundary r=d+a the molecules

leaving the computational volume were instantly sub-

stituted by the incoming molecules with velocity distri-
bution, calculated with account for the ®rst correction
to the equilibrium distribution in the presence of the

radial temperature gradient [29]:

f �v� � f0�v,Td�
241ÿ 2

5

������������
2mg

kBTd

s
k�Td�
ndkBTd

v�r

�
v2� ÿ

5

2

�
dTd

dr

35

v� �
��������������
mg

2kBTd

r
v �29�

where v� is a dimensionless molecular velocity and v�r
is its radial component. The molecule concentration nd
at the limiting sphere can be expressed in terms of Td

using

ngkBTg � ndkBTd ÿ 4

5
k�Td�

�����������������
mg

2pkBTd

r
dTd

dr
�30�

which is the condition of gas equilibrium (see, e.g.,
[7]). The second term on the right-hand-side of Eq.

(29) is a contribution of the thermal stress to the gas
pressure at the limiting sphere, which was neglected in
the Fuchs model [cf. Eqs. (17) and (18)].

The distance d in calculations was chosen large
enough to ensure the applicability of continuum trans-
port equations in the outer region r>d+a, and to
guarantee the smallness of the terms proportional to

the temperature gradients in Eqs. (28) and (30) so that
the higher-order corrections could be neglected:

d � 5�lg � a�, Kn<5

d � 2lg, Knr5 �31�

Because the temperature Td is a priori unknown, the
DSMC problem is not closed and the numerical sol-

ution must be matched with the continuum solution in
the outer region. This is implemented iteratively.
Initially, some guess value is taken for Td. According

to Eq. (20), this yields a guess for the heat ¯ow qÇ.
Then the value of the temperature gradient at the lim-
iting sphere can be obtained from

dTd

dr
� ÿ _q

4p�d� a�2k�Td�
�32�

Thus, all parameters of the velocity distribution (28)
are ®xed and the following step of the DSMC calcu-

lation can be performed, including both collision and
free-streaming stages to update the velocities and mol-
ecule positions. After this, since the internal energy

and the heat ¯ow in a hard sphere gas are connected
only with translation motion of the molecules, a new
value of the total heat ¯ow can be calculated in the d-
layer:

_q � 4pr2
�
m

2
vrv

2

�
�33�

where the brackets denote the averaging in the velocity
space. The procedure of averaging (33) in the DSMC
method is substituted by taking the average over the
calculation cell (shell in our case). In a stationary case,

the integral ¯ux (33) does not depend on the radial
coordinate r, and the spatial averaging over the inter-
val a< r< d+a was performed to reduce the statisti-

cal noise.
Based on obtained quantities qÇ , the values of the

temperature and the temperature gradient at the limit-

ing sphere are calculated, and the next iteration fol-
lows. To stabilize the convergence process, the average
value of q calculated at many preceding steps was

(28)
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used. At points N=N1, N2, N3 (where N1 1 500,

N2=2 � N1 and N3=3 � N1) the time averaging
started anew (to let the system completely `forget' the
initial conditions), so that for some time step Nc with

Nc>N3 the value of q was taken as the time average
of all those calculated [by spatial and ensemble aver-
aging (33)] in the interval N3 < N< Nc. The time step
was chosen to be less than 5% of the average time

between intermolecular collisions.
Such a procedure yielded good convergence shown

in Fig. 1 for Y=10, Kn= 1 and two values of accom-

modation coe�cient a=0.2 and a=1. The Nusselt
number Nuh is de®ned by

Nuh � _q

2pak�Tg��Tp ÿ Tg� �34�

where the reference heat transfer rate is the constant
property value. At points N1 1 500, N2=1000 and

N3=1500 the averaging over preceding time steps
started anew, which resulted in instant ¯uctuations of
Nuh. A relatively good accuracy of solution can be

reached already after about 5000 time steps, and a
minimal number of time steps in our calculations was
15,000.

5. Results and discussion

5.1. Comparison of DSMC with interpolation formulae

The described DSMC method can provide detailed
information about the gas parameters near the particle
over a rather wide range of temperature ratio Y.

However, the primary goal of the calculations was to

®nd the values of heat transfer rate q and compare

them with predictions of the discussed interpolation

formulae.

The calculated Nusselt numbers, determined for two

values of the accommodation coe�cients a=1 and

a=0.3 are shown in Figs. 2 and 3, respectively. The

results of the DSMC calculations are shown by

squares.

Fig. 1. The Nusselt number as a function of the time step

number N calculated for Kn= 1, Y=10 and two values of

the accommodation coe�cient a=1 and a=0.2.

Fig. 2. Nusselt numbers for high temperature ratio Y=10 in

the case of complete accommodation. Shown are the calcu-

lated results (squares) and values given by the variable prop-

erty extension of the Fuchs theory, Sherman and Fuchs±

Loyalka formulae.

Fig. 3. Nusselt numbers calculated for the temperature ratio

Y=10 and accommodation coe�cient a=0.3.
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The results predicted by the Fuchs±Loyalka for-
mulae (23) and (24) with z=1.3026 and x=1.9234
(dashed line) and by the Sherman formula (22)

(dashed±dotted line) overestimate the heat exchange
rates and do not agree with DSMC. On the contrary,
the predictions of the generalized Fuchs theory (solid

line) appear to hold well at all values of the tempera-
ture ratio and the accommodation coe�cient and do
not require corrections depending on the nature of the
gas.

As a test, the Nusselt numbers have been determined
for relatively close particle and gas temperatures with
a ratio Y=1.3 in the case a=0.3. The results obtained

using di�erent methods in these cases are shown in
Fig. 4 and agree remarkably well. Increasing the level
of the statistical level presents the use of the DSMC

model for particle/gas temperature di�erences with
vYÿ1v < 0.3. However, this case is already very well
studied, both experimentally and theoretically.

In general, the comparison of the DSMC predictions
with results based on di�erent interpolation formulae
has shown that the generalized Fuchs model describes
the heat transfer rates at various temperature ratios

and Knudsen numbers most accurately, which makes
it preferable to use in various applications, including
LII analysis.

5.2. Non-constant property correction factor for
di�erent interpolation formulae

To characterize the deviation from the low tempera-
ture di�erence solution, it is convenient to introduce
the non-constant property correction factor Fncp,h as

the ratio of two Nusselt numbers:

Fncp, h � Nuh�Y�
Nuh�1� �35�

where the denominator is the limiting value of the

function (34) at Tp 4 Tg, and all other parameters are
the same for both Nusselt numbers.

Fig. 4. Nusselt numbers in the case of small particle/gas tem-

perature di�erence with Y=1.3 and accommodation coef-

®cient a=0.3.

Fig. 5. Non-constant property correction factor as a function

of the ratio of the Knudsen number to the accommodation

coe�cient for Y=10 (variable property extension of the

Fuchs theory) for di�erent values of accommodation coef-

®cient. Also shown are the results predicted by the Sherman

formula and by the Fuchs±Loyalka formula for a=1 and the

same value of Y.

Fig. 6. Dependencies of the non-constant property correction

factor on the Knudsen number for di�erent temperature

ratios in the case of complete accommodation, calculated

using the variable property extension of the Fuchs model.
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In the continuum limit Kn4 0 the denominator of
the Eq. (35) equals 2, so that the correction factor
Fncp,h coincides with the ratio of non-linear and linear
heat transfer rates given by Eq. (12) for the case of

power law dependence of the heat conductivity coef-
®cient. In the free-molecular limit, formula (4) yields
the following equation:

Fncp, h � �g
� � 1��gÿ 1�
�g� ÿ 1��g� 1� �36�

where g � is the average value of the adiabatic constant
de®ned by Eq. (6), while g is its value at T=Tg. For

monatomic gases in the free-molecular limit the correc-
tion factor Fncp,h equals unity.
Figs. 5±7 show the dependencies of the correction

factor on the Knudsen number in the intermediate
regime for monatomic gas of hard spheres with o=1/2
and g=5/3. Most of the data are obtained using the

generalized Fuchs two-layer model, which agrees excel-
lently with the DSMC model at high temperature
ratios, but remains applicable also when the particle/
gas temperature di�erence is small. The latter quality

is necessary to calculate the denominator Nuh(1) in Eq.
(35). The dependencies reach maxima in the continuum
limit and have minima in the region of moderate

Knudsen numbers, with positions depending mainly on
the accommodation coe�cient a (Fig. 5). It is interest-
ing to observe that if the values of the correction fac-

tor are plotted against the ratio Kn/a, the curves
appear to be very close, di�ering only up to about
10%. Remarkably, neither of two alternative interp-

olation formulae (20) and (21) predicts minima for the
factor Fncp,h in the range of intermediate Knudsen

numbers. This non-monotonic behavior is connected
with non-linear dependence of the real heat ¯ow rates
from the particle in the transition regime, which are

lower, than could be expected based on simple interp-
olations between the continuum and free-molecular
values.

A variation of the temperature ratio Y at a ®xed
value of accommodation coe�cient (a=1) results in an
increase of the continuum limit value of the correction

factor and in a decrease of its minimum value (Fig. 6).
For real gases, this picture may be di�erent (Fig. 7).
Here, the correction factor is calculated for molecular
nitrogen with background temperature Tg=300 K at

various particle/gas temperature ratios and complete
accommodation at the particle surface. The exponent
for the temperature dependence of the heat conduc-

tivity coe�cient was set to o=0.76 [30], while the
values for adiabatic constant g in the interval
300 K R T R 3000 K were taken from the JANAF

tables [13]. Although the minima of the curves with
positions almost independent on Y are also observed
(cf. Fig. 6), the limiting values of the correction factor

in the free-molecular limit are all di�erent due to vari-
ation of g with temperature.

5.3. Applicability of results to transient heat transfer

problems

In LII aerosol particle heat-up, as well as in some

other applications, the particle temperature may
change very rapidly due to various energy transfer
mechanisms. The free-molecular heat transfer law (19)

is based only on the assumption of Maxwellian gas
molecule velocity distribution far (at `in®nity') from
the particle and an energy accommodation model for
molecule±surface interaction. If these assumptions are

applicable, Eq. (19) is valid for any rate of particle
heat-up/cooling.
However, in the transition and continuum regimes,

the quasi-stationary approach of this paper can be
used only if the characteristic time for particle cooling
or heat-up, tp,h, is substantially larger than the charac-

teristic time teq for equilibration of the molecular dis-
tribution near the particle.
In the continuum regime the relevant equilibration

time can be calculated as the time necessary for a ther-
mal `wave' to propagate the distance a:

teq �
a2rgcv

k�Tg� , Kn� 1 �37�

while in the transition regime (Kn of order unity) it
can be estimated as the ratio of the particle size to the
characteristic molecular thermal velocity (which fol-

Fig. 7. Non-constant property correction factor for nitrogen.

The background gas temperature Tg=300 K and complete ac-

commodation on the particle surface are assumed (Fuchs

model).
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lows from the structure of the Boltzmann equation):

teq � a

�c
, Kn � O�1� �38�

where cv is gas speci®c heat capacity. In calculating the
cooling time, consider, for example, the case when a

particle changes its temperature only due to heat trans-
fer to the carrier gas. Then, according to Eqs. (7) and
(19) (Fuchs model) for the heat transfer rates, we have
the following estimates for characteristic cooling time

tch in the continuum and transition regimes:

tp, h �
a2rpcp

3k�Tg� , Kn� 1 �39�

where cp is the speci®c heat capacity of the particle.
Eqs. (37)±(40) yield the following conditions of ap-

plicability of the quasi-stationary approach:

tp, h � 2mpcp

apa2pg �c
, Kn � O�1� �40�

tp, h

teq

� rpcp

rgcv

� 1, Kn� 1 �41�

tp, h

teq

� rpcpmg

argkB

� 1, Kn � O�1� �42�

Conditions (41) and (42) always hold due to much
higher density of the particle compared to the gas den-

sity rg, while the particle and gas speci®c heat ca-
pacities and the gas constant kB/mg are of the same
order-of-magnitude. Therefore, the quasi-steady
approach is typically applicable to dense spherical par-

ticles and aggregates.
However, this is not necessarily the case for sparse

aggregates, consisting, for example, of many dense

spherules of comparable size a0. In the free-molecule
regime, the quasi-steady approach to calculation of the
aggregate/gas heat transfer is applicable on the same

conditions (Maxwellian molecule velocity distribution
at in®nity and energy accommodation model) as for a
single particle. Due to weak thermal `shielding' [31],
the free-molecular heat transfer rate from each spher-

ule in a sparse aggregate is comparable to the heat
transfer rate (5) from an isolated single spherule at the
same temperature.

The heat transfer from the particle aggregate in the
continuum regime is the same as from a sphere with
the equivalent radius Req, which coincides with the

equivalent di�usion radius and the electrical capaci-
tance of the aggregate [32]. Therefore, instead of con-
dition (42) we have the following one:

tp, h

teq

� rpcp

rgcv

a30N

3ReqL2
� 1,

lg
L
� 1 �43�

where L is the geometric diameter of the aggregate. In

the transition regime, consider a Fuchs' d-layer with a
thickness of about a mean free path around the aggre-
gate, inside which the inter-molecular collisions are

negligible. Repeating the considerations made for a
single particle, we arrive at the following condition:

tp, h

teq

� rpcpmg

rgkB

a0
L
� 1,

lg
L
� O�1� �44�

Since the spherule radius a0 is always smaller than the

equivalent radius Req and the aggregate size L, satis-
faction of condition (43) guarantees the applicability of
the quasi-steady approach, not only in the continuum

regime, but also in the transition regime [Eq. (44)].
These conditions do not follow from conditions (41)
and (42) and must be checked before applying for-

mulas based on discussed quasi-steady analysis, es-
pecially for large aggregates at high pressure.

5.4. Other energy transfer mechanisms

Depending on the particle and gas temperature,
there can be a variety of energy transfer mechanisms,

acting simultaneously with ordinary molecular heat
transfer treated here. For example, the particle ma-
terial may evaporate, thus creating a sink of energy,

which often becomes a dominating cooling mechanism
for hot particles above some critical temperature. Also,
the particle surface, heated up to several thousand

Kelvins, may cause dissociation of the incident poly-
atomic gas molecules, thus increasing the heat loss
rate. At very high temperatures and for relatively large
particles, the radiation losses can also become non-neg-

ligible. When these processes dominate the particle
cooling, the associated cooling times are substantially
smaller than the characteristic time due to background

gas heat conductivity [Eqs. (39) and (40)]. Then, if the
ratio of the cooling time to the equilibration time (37)
and (38) is comparable to or smaller than unity, the

quasi-steady heat transfer rates, calculated in this
paper, become less accurate. However, if the contri-
bution of other mechanisms to the total energy trans-
fer is overwhelming, the exact calculation of the heat

conductivity from the particle loses importance.
These alternative energy transport mechanisms must

be considered to correctly model the evolution of the

particle temperature under highly non-equilibrium con-
ditions, as in the case of LII measurement or plasma
processing, and will be discussed in a follow-up paper.

It should also be said that while, for the purpose at
hand, we simply speci®ed constant values of the physi-
cal parameter a (<1), representing the overall energy
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accommodation coe�cient for molecular encounters
with the hot solid surface, in practice the actual shape

of the Knudsen transition could be more complicated
(cf. Fig. 7) if this coe�cient had a substantial depen-
dence on the temperatures Tp and/or Tg. For any par-

ticular gas/solid combination this kind of dependence
is not uncommon (see Refs. [9] and [12]), although
such data are often not readily available for the sys-

tems of great engineering interest.

6. Conclusions

Heat transfer rates between a highly `overheated'

spherical particle and its carrier gas have been calcu-
lated using a direct simulation Monte-Carlo (DSMC-)
technique over a wide range of Knudsen numbers. Our

quasi-steady results for the test case of a hard sphere
monatomic ideal gas, and at absolute temperature
ratios Tp/Tg up to 10, were compared with predictions
of two available interpolation formulae and the `two-

layer-in series' model of Fuchs, suitably generalized to
incorporate variable thermophysical properties. The
DSMC results, considered here to be `exact' represen-

tations of the non-equilibrium Boltzmann equation sol-
ution, are found to be conveniently described by the
variable property extension of the Fuchs model, mak-

ing it our recommended method for rapid calculations
of particle/gas heat transfer rates in the Knudsen tran-
sition regime at large particle/gas temperature ratios.
This information is necessary (if not su�cient) in a

number of applications, including the interpretation of
laser-induced incandescence (LII-) signals to infer accu-
rate aerosol particle size distributions [33]. We note

that sublimation and/or dissociation e�ects, beyond
the scope of the present contribution, will also have to
be taken into account in many applications of LII.

It is interesting to observe (see Figs. 6±9) that the
variable property correction at any particular Tp/Tg

signi®cantly larger than unity is not monotonic in the

Knudsen number, causing simple interpolation schemes
(between the free-molecule and continuum limits) to
fail rather badly. We conclude that the equations
developed here can be used for the case of highly over-

heated spheres in polyatomic ideal gases with arbitrary
temperature-dependent heat capacity and thermal con-
ductivity. Moreover, while explicitly derived for the

case of a solid spherical particle, these variable prop-
erty correction equations/results are expected to be
particle shape/morphology insensitive.
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